MASS TRANSFER REGIMES IN REACTIONS
WITH A DISPERSED PHASE

Yu. A, Buevich and V. V., Butkov

Equations are formulated which determine the movement of phases and the integral inter-
phase mass transfer in isothermal two-phase reactors, Simple models of extraction
which are not accompanied by a change of the specific volume of the phases and the dis-
solution of gas in the countercurrent columns and apparatuses with a horizontal flow of
liquid are discussed. Some conclusions obtained differ considerably from the traditional
ideas of the theory of solvent extraction. Mass transfer between the dispersion (continu-
ous) medium and the dispersed (disperse) phase in the presence of relative movement of
the phases are considered below, Such processes are realized in practice in various
bubbling and atomizing devices (extraction or absorption countercurrent columns, some
types of scrubbers, plate and other apparatuses with a horizontal flow of the continuous
medium, ete.). Of primary interest is the macroscopic description of mass transfer; the
quantities characterizing local mixing in the reactor and momentum and mass transfer
between the dispersion medium and a single particle (drop or bubble) of the dispersed
phase are assumed to be known functions of the macroscopic parameters.

1. Let there be in a system J components participating in mass transfer and in the chemical reac-
tions accompanying this process, their weight concentrations in the dispersed and continuous phases being
equal, respectively, to cy4' and cgj’ i=1,...,d). Considering the material balance of these components,
we write the corresponding equations for cyj' and cy3' in both phases:
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Here p, £, and w, v are the volume concentrations and velocities of the dispersed and continuous
phases; n, ¢, ¢ are the countable concentration, volume, and radius of the drops of the dispersed phase;
Cjjs' is the concentration on the surface of the drops; K;j is the coefficient of mass transfer of the j-th
substance from the continuous medium referred to one drop; ¥ j’ is the equilibrium coefficient of distribu-
tion of the substance between phases, The guantities Qij and Q,j describe the formation of the j-th sub-
stance as a result of chemical reactions; they are referred to a unit volume of the corresponding phase.
The tensor Dy characterizes the chaotic mixing of the drops,and tensor Dyj characterizes such mixing and
molecular diffusion of the j~-th substance in the continuous phase, We will consider below Cijs’ = Cyj'.

In the general case cyjg' # Cyjr, so that it is necessary to consider convective diffusion of substances
within a drop, and so the convective diffusion in the medium surrounding this drop — otherwise it is impos-
sible to formulate the boundary conditions on the surface of the drop. The latter complicates the problem
extremely and, therefore, in extraction theory [1, 2] one usually takes Cyjs’ = C4j's changing appropriately
the determination of the coefficient K, and ¥3'. Here we will proceed in the same way, regarding #;, K
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as well as Qq—, ng, Dy, Dzj as certain functions of all concentrations, p, and other parameters,
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We note that Egs. (1,1) represent a natural generalization of the equations of material balance used
in simple calculations of extraction and absorption apparatuses [1, 2]. They were formulated in [3] for the
quite important regime of extracting one substance,

Systems of equations (1.1) should be supplemented by equations of the hydromechanics of the two-
phase system being considered. The equations of the conservation of mass of the phases are written in the
form

Tat" (dyp) + ‘581._ (wd,p) =— Z K (s e’ —€a5)
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Here d; and d, are the densities of the materials of the dispersed and continuous phases which depend
on their composition.

The equations of the conservation of momentum of the phases are written for simplicity with neglect
of viscous stresses in both phases. We have [4]
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where g is the acceleration of gravity and F is the force of interaction between the phases, referred to a
unit volume of the mixture, In the expression for F, which is assumed to be a known function of p and of
the relative velocity v — w, the force acting on the drop from the average field of the pressure p in the con-
tinuous medium is not taken into account,

To close system (1.1)-(1.3) we must use the equations of state

ho=di(p, i), d=d;(p, ) (1.4)
following from the thermodynamic analysis of the materials of the phases [1, 2].

Along with concentrations C4j' and cy3' it is convenient to consider the concentrations

€y = Ptyy, Caj = 8Cy5' (1.5)
which are referred to a unit volume of the mixture.

The solution of the complete system of Egs. (1.1)-(1.4) presents considerable difficulties. However,
in many cases this system can be simplified appreciably. Some qualitative and quantitative conclusions
which are quite important in the designing of absorption or extraction devices of various types can be made
from an analysis of these simplified problems, We will examine below the simplest models of mass~trans-
fer processes in apparatuses with a counter-flow and direct flow of the phases and with a horizontal flow of
the continuous phase.

2. We will investigate simple extraction of a single substance in a countercurrent column under
idealized mass~transfer conditions. Namely, we will consider that the transfer of the substance has prac-
tically no effect on the specific volumes of the phases and mass-transfer coefficient K, so that these quanti-
ties are constant over the height of the column. In addition, we neglect the concentration dependence of the
distribution coefficient and local mixing in the column. These assumptions are not of fundamental import-
ance; they all exhibit a typical apparatus character and are quite common in solvent extraction theory [1,2].

Considering a one-dimensional flow in a countercurrent column, we orient the x' axis in the direction
of movement of the dispersed phase and select the origin at the place of its entrance into the column. In-
troducing dimensionless quantities and restricting ourselves to an investigation of steady extraction, we ob-
tain from (1.1) the following simple equations for concentrations ¢y and ¢, from (1.5):
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Here h is the column height; v = const is the velocity of the counter-flow of the dispersion medium;
u = w — v is the velocity of motion of the drops in the stationary continuous medium, From (1.3) we have
the equations for u and the gradient p at p = const

d
— 22 1 dg=0, d=dip+dgs, p(——‘%+d1g)+l’-(p!u)=0 (2.2)

so that u can be considered a known function of p and of the physical parameters; it is clear that u is also
constant. The equations of the conservation of mass (1.2) are satisfied identically in view of the assump-
tion made concerning the constancy of the specific volume of the phases.

From (2.1) follows the relation
(1 — y)ey — yec2 = const 2.3)

which is used widely in practical calculations [1, 2].

For determinacy we will examine extraction from the dispersed phase, when the boundary conditions
imposed on the solutions of system (2.1) have the form

¢ (0) = ¢y = pey’s (1) =0 (2.4)

The solution of problem (2.1), (2.4) has the form
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From the technological standpoint it is convenient to characterize the operation of the countercurrent
reactor by the values of the coefficient of saturation of the dispersion medium [ or the coefficient of ex-
traction of the substance from the dispersed phase m, which are introduced by means of the relations [see

(2.15)}
A
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When y —» 0 we have [ - 1, m 0, and when ¥ — 1 we have on the contrary ! — 0, m -1, When
k—, i.e., in the case of an unlimited increase of the column height h or coefficient K, the values of I and
m approach the limits [, mw, whereby

1
Lo ome=r, r<t= 1y @.7)

lm=~¢T1 My =1, T>%

We emphasize that at certain values of y, i.e., for certain relationships between the velocities of the
phases in the reactor, lx or m, is less than unity, i.e., complete saturation or extraction is not achieved
even with an unlimited increase of the column height.

Let us consider the operating characteristics of a column for fixed values of I or m, which are de-
termined by practical requirements imposed on the real extraction process.

Thus, the requirement ! = const is characteristic for processes in which it is necessary to achieve
a certain saturation of the dispersion medium by the substance being extracted from the dispersed phase.
The operating characteristics of such processes, which represent the dependence of k on y and ¥ for given
1, are obtained easily from the first relation (2.6). They have the form

—_ 1d=" 1—1
A=+ Pr In T—Prd — 1) 24 (Z = const), (2.8)

78



Similarly, the operating characteristics of processes satisfying the requirement m = const are ob-
tained from the second relation (2.6)

Yr—(l—1m

_ ___ri—m
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=TT {m = comnst) (2.9)

In

The latter requirement is natural, for example, in processes of purifying the dispersed phase of some
impurity.
It is easy to see that the quantities k from (2.8) and (2.9), which are regarded as functions of y, are
determined, respectively, in the regions
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whereby, when ¥ ., ¥ or v s ¥, the quantity k becomes infinite.

The indicated behavior of the operating characteristics means simply that the extraction process
with given [ = const or m = const can by no means be accomplished at any value of v from the interval
[0, 1]. If this value lies outside the regions of (2.10), this process camnot be realized in prlnCIple even
when k -, This same conclusion follows also from relations (2.7).

This is a fundamental conclusion which in a number of cases can be of decisive importance in the de-
signing of extraction and absorption countercurrent reactors. In particular, from here it follows that some
statements of the theory of solvent extraction which are taken for truth as self-evident are not only not
evident but are not true in general. As an example we can cite the assumption of the continuous attainment
of an equilibrium distribution of the substance between phases at the place of entry of one of the phases in-
to a column of infinite height, the assumption of the asymptotic approach of the coefficient I and m to unity
upon an increase of column height, and certain other statements [1, 2].

As k-, the quantities ! and m approach the limits, which depend considerably on the relationships
between the phase velocities y, distribution coefficient ¥, etc. Apparently the indicated circumstances
were not noticed in the theory [1, 2] because the investigation of fundamental equations of type (2.1) is
generally replaced in this theory by examination of the first integral (2.3), and the constant figuring in it is
usually expressed by a priori unknown concentrations of the substances in both phases at the outlet of these
phases from the reactor.

Physically, the absence of a steady regime I = const in the presence of a strong counter-flow (y > Y
is related simply with the circumstance that the substance entering the reactor with the dispersed phase is
not enough for proper saturation of a too large amount of the continuous medium. Likewise, the absence of
the regime m = const in the presence of a weak counter-flow means that the small amounts of the continu-
ous medium are not enough for proper removal of the dispersed phase.

Let us now consider extraction under direct-flow conditions to which the ranges v < 0 and y > 1 of
the change of y correspond. If y < 0, the dispersed phase overtakes the continuous phase and if v > 1,
vice versa. In the first case, equations (2.1) are valid as before, and in the second case the equations are
obtained from (2.1) after transformation x' »-—x. For direct flows the second condition of (2.4) loses mean-
ing; we replace it by the condition ¢,(0) = 0. The solution of the problem is written then in a form valid both
for y < 0 and for > 1

Co

= T e (7] sien T+ vlv]e) 2.11)
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The coefficients of saturation ! and extraction m are determined by the preceding formulas (2.6). We
have from (2.6) and (2.11)

— (x]—signnt—e _q_ x| —signr+irfe? 212
=TTt sy "l T AT R s (2:12)
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The values of I, and my, corresponding to k— « are obtained from (2.12) for A > «, We see that
the maximum possible values of [ ,, and m,, equal to unity, are not attained no matter what the value of y.
(The exceptions are the limit values y — — 0, when lo — 1, and ¥ — 1 + 0, when me — 1, which are of
little interest.) Relations (2.12) permit continuing the operating characteristics (2.8) and (2.9) of the ex-
traction processes constructed in the range 0 = v =< 1 beyond the limits of this range.

3. As a second, somewhat opposite,example we will consider the dissolution (absorption) of a dis-
persed gas in a liquid under direct-flow and counter-flow conditions in a vertical direction. In this case
the constant density of the gas d; will figure in the equation in place of the concentration c,', but in return
the quantity p is variable.

We will assume for simplification that the density of the liquid d, and the distribution coefficient 3’
do not depend on the concentration ¢ = ¢,'; then in particular $'d; = ¢, = const.

The two equations of the conservation of mass (1.2) and equation of material balance in the liquid
from (1.1) are written in the form

., .
d, = lw—m)pl+k(cx—¢) =0, w=—,%, '1’=u—vo
d
d, ™ (1) T E(ce,—c)=0
, ) ,
1) F ke —e) =0, k=—k o= 3.1)

Here uy, py, =1 — &, is the relative velocity and volume concentration of the gas bubbles at the place
of their entry into the column; the other notations are as before. The values of ¥ < 0 correspond to an
ascending direct flow (the gas leads the liquid), the values of 0 = v < 1 to a counter-flow, and the values of
v > 1 to a descending direct flow (the gas lags behind the liquid).

The first two integrals of system (3.1) can be represented in the form

dy (w —y) p — doey = Cy, (dy — c)ey = C, (3.2)
where C,, C, are constants.

Obviously, ¢ ~ dy «<d, and, therefore, from the second relation (3.2) follows

Y= veE, Yo = vl ! (3.3)

Here v, is the velocity of the liquid in the absence of gas. As before, the quantity u can be deter-
mined in terms of p from Egs. (1.3) or (1.2), and the unknown ¢ can be expressed in terms of p by means
of the first integral of (3.2). Substituting these expressions and relations (3.3) into the first equations of
(3.1), we obtain the equation for the only unknown p.

For an illustration of the possible dissolution regimes it suffices to consider only the equation describ-
ing the absorption of gas far from saturation. (Such dissolution is realized, for example, in cases when the
dissolved gas enters into a rapidly occurring reaction,)

Assuming ¢ « ¢, , we have the equation

d

£

[@—1)pl + 4 =0, p(0) = py (3.4)

The quantities u and K figuring in the determination of w, ¥, and k should be expressed as functions
of p. For determinacy we use here the relations obtained by Levich [5] for small and moderate Reynolds
numbers R (up to R~ 700-800)

w="b dlfz ful@), K=V (’mgi—u(m)w fe(p) ok, d=dge (3.5)
Here p is the viscosity of the liquid; D is the coefficient of diffusion of the dissolved gas in the liquid;
fu(p) and fir(p) are some correction functions which take into account the constrained character of the
flow of the bubbles and diffusion from their surface. For small R we have b=2%}, b' = 8f)(n/ 3)%; for large
R,b=Y, v =)/ 2)%. We note that the calculations of certain other authors (see, for example, [1, 2])
also to lead to formulas (3.5) for slightly different b and b'.
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Neglecting the processes of fractionation and coalescence of the bubbles, we can write the equations
n=plc =const, a=.ay(p/pg)h (3.6)

where g, is the initial radius of the bubbles, Then from (3.1), (3.5), and (3.6) we obtain the relations (we
restrict ourselves to the case p<x 1, when fy=~ fr= 1)

AL p \5/e _Pody __ e Ddg \1/2 nhaeb/2 (3.7
w—<P0> k 23( ) ey 23— Pod:( p ) Eplp

Introducing the unknown ¢ = p /5, and using (3.7) and relation y = v, following from (3.3) for p « 1,
we obtain from (3.4) the problem

e 2 =0, E(O)=1 3.9
The solution of this problem is represented in the form

(1 — &%) — 37, (1 —EY8) =z 3.9
We will investigate relations (3.8) and (3.9) separately for values of y, in different ranges.

Ascending Direct Flow (y, < 0). The quantity ¢ (x) decreases monotonically from one for x = 0 to
zero for x = x,, where

zo = B (L — 3y) >0 (3.10)

In the working section of the column (0 < x =< 1) complete dissolution of the gas (m = 1) occurs if
Xy < 1. Otherwise the coefficient of extraction is equal (x; > 1) to

{om=2E@=w | ey B

Po (4o — 7o) et g 3 Dy (3 '11)

Using (3.9) and (3.11), we can easily construct the operating characteristics of a column with an
ascending direct flow. We note that the quantity x,, which determines the height at which the bubbles dis~
appear completely, decreases rapidly with increase of § and decrease of |y,].

Descending Direct Flow {y, > 1). The relations characterizing absorption in this flow are obtained
from (3.8) and (3.9) after changing the sign of x. Relation (3.10) for x, is replaced by the relation

Zy = P (3y, — 1) (3.12)

but expression (3.11) for m remains valid for the case being considered. We see that for the same |y
dissolution occurs more quickly in the ascending flow, when the dispersed gas leads the liquid. As follows
from the results in Section 2, simple extraction, conversely, occurs slightly more quickly in the direct
flow in which the continuous phase overtakes the dispersed.

Counter-Flow (0 = y, =1), As the gas dissolves the size of its bubbles and their relative velocity u
decrease until at some level x = xy this velocity is comparable to the velocity of the counter~flow of liquid
vy, 1.8, untll "flooding" occurs. We see from (3.8) that this level is determined by the condition ¢ (xy) =
Em = 'Vo 2, i.e., from (3.9) we obtain the expression for xm

m =Bt — T,o"’*) — 3% (1 — 1] =B (1 — 3y + 27%) (3.13)

The condition of the absence of flooding in the countercurrent column obviously has the form xpy > 1.
In this case the coefficient of extraction is represented as before in the form (3.11). If Xm in (3.13) is less
than unity, flooding oceurs in the working part of the apparatus and it is necessary to investigate the re~
turn movement of small bubbles beginning at the level x = xy,. For this purpose it suffices to introduce a
new coordinate z = Xy — x and use the results obtained above for the descending direct flow. Introducing
the new unknown £ = p/ Pm» Where py, is the volume concentration of the rising bubbles for x = Xm (Pm =
§ mPy), and the new parameters fm, ¥m, which are expressed in terms of Pm, &m just as g in (3.7) and
Yy in (3.3) are expressed by pg, a4, we obtain for £ an equation of the same type as (3.9)

A =09 =3 (L =L = =24+ BTN = ~Bz (3.14)
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Complete dissolution of the gas bubbles in the column will occur if [compare with (3.12)]

2° =P BYm — 1) = B < 2y (3.15)
The obvious equality vm =1 is used in (3.14) and (3.15).

The volume concentration of gas emerging from the column along with the liquid is p° = {(xy) om
(if, of course, z° > xm). In this case we have the following equation for the coefficient of extraction:

L P m—ue) s e To—Eml) e .
l—m= oy = &m&” = —, L =4(6") (3.16)

Using relation (3.14) and the definition of p°, we easily express m as a function of the parameters vy,
uy, k, and p, and construct further the working characteristics of the process.

Complete dissolution of the entire gas introduced into the column is evidently achieved when condi-
tion (3.15) is achieved. If the technological purpose consists in maximum absorption of the gas by the
liguid in the countercurrent column, it is advantageous to select different parameters (h, py, and others)
such that the following relations are fulfilled:

=117, (L1, 2 <y,

We note that the presence of flooding in the column and subsequent increase of small gas bubbles by
the flow of the liquid leads to some equalization of the gas constant over the column height., Actually, the
total volume concentration in the sections of the column in which there are both ascending and descending
bubbles is given by the relation

p(E) = Pk (@) + Pl (B — ),  0<2<tp, O0<y—2<7 (3.17)

In particular, at the height of flooding the concentration is equal not to py but to 204y.

It is easy to see that the conclusions obtained do not change qualitatively also on rejecting the
simplifying suggestions p<« 1, ¢ << cx, etc. However, new steady regimes of absorption differing some-
what qualitatively from the regimes considered can appear near saturation (¢ ~ c,).

4, We will consider briefly the processes of simple extraction and absorption of gas under conditions
of a horizontal flow of the continuous medium (plate apparatuses, aeration and purification of industrial
waters, etc.). We will use further the same simplifying assumptions as in Sections 2 and 3.

The equations of simple extraction, analogous to Egs. (2.1), have the form

361 » 601 362

RGrn +W+k(‘l’61—62)=,0, T 5y — ke, —e) =0 4.1)

Here the y axis is directed along the velocity of the continuous medium, and the parameters y, k, and
¥ are determined by the previous relations (2.1) in which h is the height of the layer of the continuous
medium, We write the boundary conditions in the form

€1 Jx=o0 = €os Caly=0 =0 4.2)

The equations of the characteristics of system (4.1), which determine the trajectories of the drops of
the dispersed phase, have the form z = y — yx = const. It is natural to introduce new coordinates x, z in
which problem (4.1), (4.2) takes the form

%c; +1 (e, —cy) =0, €1 lmp = €y “4.3)

Bca
Az

-7 ("'pcl — 62) =0 Cs lz:o =0

We apply to (4.3) the Laplace transform with respect to variable z and denote the transforms of func-
tions ¢; and ¢, in terms of ¢, and ¢,. We obtain the problem

d 4.4)
;(;1 +’T}(‘P‘P1“’%)=0y P = pl_[;_TT P, ® x=o=ch
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The solution of this problem has the form

_ %o —bypz - Yreo —Vrpz (4.5)
# P PFry . BT o Py

where p is the Laplace variable,

Using the known properties of the Laplace transform and the table values of the originals, after
certain transformations we obtain from (4.5) the relations

Vz
& (@,3) = v (1 4+ 2r Ve § vl @y Ve dt) 4.6)
1+ )
vz
62 (2,2) = 2eqprevs \ ol (2 Vo) tdt, 2 =y — e
J

The solutions (4.6) of problem (4.3) are determined, obviously, in the range

0<e<<t, 2>0 .7
When z < 0 it is necessary to take ¢y = ¢, = 0 (the dispersed phase is completely absent in this case).
Of practical interest are the apparatuses whose length L greatly exceeds the height of the layer h,

Setting z = L./h, zr = ypr ~ r, we obtain the following formal relations for the coefficients of saturation and
extraction in the reactor of the type being considered:

1
’Scz(x,r)dx, ) m=~1—

=~

%cl (1,z)dz (4.8)

0

1
Yeo

Col’

=]

Relation (4.8) can also be used in constructing the operating characteristics of the extraction process.

Absorption of gas when p «< 1, ¢ «<cx does not depend on the position of the point along the flow of
liquid, and the equation corresponding to (3.8) acquires the form

D g 2B =0,  Eleo=1 4.9)

Hence we have

E=(1—Ba)% (4.10)

If x, = 3“‘1 > 0, where g is defined in (3.7), then part of the gas emerges from the liquid layer without
being dissolved in it, and

1 —m= M\Fl — g% (1) (4.11)

Pollo

If xo < 1, all gas introduced is dissolved (m = 1), and there is no gas in the range x, = x < 1. The
trajectories of the bubbles are determined by the relations [see (4.10)]

dz w E’/s — (1_Bx)‘/s 5

7 VR e N 7% Y=Yt

(4 — (1 oyt (4.12)
where y; is the coordinate of the point of entry of the bubble into the liquid layer.

We note that results completely analogous to those obtained above can be obtained easily also for any
other theoretical or empirical relations for u and K, differing from (3.5). The relations presented permit
optimizing various types of reactors with respect to various indices and selecting, for example, the optimal

value of y for fixed p, @, and h, determining the optimal dispersity (i.e., the quantity a) as a function of the
other parameters, etc,

83



84

LITERATURE CITED

R. E. Treybal, Liquid Extraction, McGraw-Hill (1963).

B. I, Brounshtein and A, S, Zheleznyak, Physicochemical Principles of Solvent Extraction [in
Russian], Khimiya, Moscow-Leningrad (1966).

L. A, Galin and O. M. Churmaev, "Some problems of the movement of gas bubbles in a liquid layer
in the presence of diffusion and chemical reactions," Zh, Prikl. Mekhan, i Tekh. Fiz., No. 1 (1971).
Kh, A. Rakhmatulin, "Principles of the gas dynamics of mutually penetrating movements of com-
pressible media," Prikl. Matem, i Mekhan., 20, No. 2 (1966).

V. G. Levich, Physicochemical Gas Dynamics [in Russian], Fizmatgiz, Moscow (1959).



